Что такое корковое и мозговое вещество почки

Содержание

Корковый слой почки и его функции: мозговое вещество почки

Что такое корковое и мозговое вещество почки

Почки являются парным органом выделительной системы человека.

Они располагаются по две стороны от столба позвоночника на уровне 11-12 позвонка грудного отдела и на уровне 1-2 позвонка отдела поясничного (это нормальная локализация органов мочевыделения).

Они имеют достаточно сложное строение, в котором особое место занимает корковый слой почки. В том, что это такое — корковое вещество почек, и каковы его функции, разбираемся ниже.

Функции мочевыделительных органов

Стоит знать, что именно почки берут на себя максимальную нагрузку при обеспечении человеческому организму нормального процесса жизнедеятельности

Стоит знать, что именно почки берут на себя максимальную нагрузку при обеспечении человеческому организму нормального процесса жизнедеятельности. В течение дня мочевыделительные органы перегоняют через свои фильтры до 200 литров плазмы крови. В то время как в человеческом организме всего три литра крови. То есть, почки отфильтровывают объем фильтрата, в 60 раз превышающий номинальные его объем в организме.

Отметим, что при снижении функций мочевыделительных органов здоровье человека заметно пошатывается. Поскольку именно они очищают кровь от различных токсинов, ядов и продуктов распада органических и минеральных соединений. И если функции почек не работают должным образом, то в человеческом организме оседают невыведенными все яды. Такая патология в самой тяжелой стадии называется уремия.

В целом, человеческие почки выполняют ряд таких функций:

  • Гомеостатическая. Подразумевает регуляцию водно-солевого баланса в организме.
  • Эндокринная. Обеспечивает выработку нужных гормонов в частности эритропоэтина, ренина и др. эти гормоны благотворно влияют на работу нервной и сердечнососудистой систем человека.
  • Метаболическая. Заключается в переработке жиров, белков и углеводов.
  • Секреторная. Подразумевает отделение от плазмы веществ, предназначенных для выведения или реабсорбции.
  • Реабсорбция. Процесс обратного всасывания глюкозы, белка и других микроэлементов после их фильтрации.
  • Выделительная. Собственно, заключается в выведении всей скопившейся в лоханках органов мочи.

Важно: стоит знать, что все функции мочевыделительных органов между собой неразрывно связаны и при отказе одной из них автоматически страдают и другие. При этом человек вполне может жить с одним здоровым органом. Парность же почек обусловлена процессом гиперадаптации человека.

: иногда у младенца диагностируют врожденные аномалии строения мочевыделительных органов. К таковым относят их удвоение или добавочный (третий) орган.

Анатомия почки

В целом почки имеют вид и форму боба, верхний закругленный полюс которого смотрит в сторону позвоночного столба

В целом почки имеют вид и форму боба, верхний закругленный полюс которого смотрит в сторону позвоночного столба. В месте внутреннего изгиба органа расположены почечные ворота или сосудистая ножка (как её ещё называют).

Ножка представляет собой сплетение сосудов, состоящих из почечной вены, аорты, лимфатических сосудов и нервных волокон. Именно через ножку в почку попадает обогащенная кислородом кровь и именно через неё же снова уходит в организм человека в уже очищенном виде.

Здесь же в почечных воротах локализуются лоханка, в которую собирается вторичная моча и мочеточник, по которому она отправляется в мочевой пузырь.

Для надежности и большей неподвижности каждый орган занимает своё анатомическое ложе, а её фиксацию обеспечивают жировая капсула и связочный аппарат. Если нарушается структура одного из них, почка может провисать, что называется нефроптоз. Такое состояние неблагоприятно для здоровья пациента и функций самого органа.

Стоит знать, что фасция (жировая прослойка) защищает орган от механических травм при сотрясениях и ударах. Под жировой фасцией почки укрыты фиброзной капсулой темно-коричневого цвета. А уже под фиброзной капсулой располагается почечная ткань, именуемая паренхимой.

Именно в ней и происходят все важные процессы фильтрации и очистки крови.

Корковое вещество

Корковое вещество почки расположено сразу под фиброзной капсулой и имеет неоднородную структуру

Паренхима (ткань органа) состоит из двух веществ — коркового и мозгового.

Корковое вещество почки расположено сразу под фиброзной капсулой и имеет неоднородную структуру. То есть состоит из частичек разной плотности. В корковом веществе имеются лучистые участки и свернутые.

Сама структура коркового вещества имеет вид долек, в которых располагаются структурные единицы мочевыделительных органов — нефроны. Они в свою очередь содержат в себе почечные канальцы и тельца, а также боуменову капсулу.

Стоит знать, что именно здесь происходит первичная фильтрация плазмы крови и выработка первичной мочи. В дальнейшем полученный фильтрат по канальцам отправляется в чашки почек, расположенные за мозговым веществом.

Важно: самой главной функцией коркового вещества является первичное фильтрование мочи.

Мозговое вещество

Следом за корковым веществом располагается мозговой слой мочевыделительных органов

Следом за корковым веществом располагается мозговой слой мочевыделительных органов. В нём локализуются нисходящие окончания канальцев почек, вытекающие из коркового вещества. Оттенок мозгового слоя гораздо светлее коркового.

Стоит знать, что структурная единица мозгового слоя паренхимы — это почечная пирамида. Она имеет основание и верхушку. Последняя уходит в небольшие чашечки, которых в норме должно быть от 8 до 12. Те, в свою очередь, объединяются по несколько штук в большие чашки, образуя таких 3-4 штуки. А уже чашки плавно перетекают в лоханку, имеющую форму воронки.

Такая система называется чашечно-лоханочной (ЧЛС).

Именно в мозговое вещество (в пирамидки, а затем в чашки) перетекает первичная моча после фильтрования. Затем она отправляется в лоханки, откуда и отправляется к мочеточникам и далее к выходу их уретры через мочевой пузырь.

Нефрон

Как было отмечено выше, нефрон является структурной единицей почек

Как было отмечено выше, нефрон является структурной единицей почек. Именно нефроны формируют клубочковый аппарат органов. И именно они отвечают за выделительную функцию органов. Проходя по извилистым путям нефронов, моча обрабатывается достаточно мощно.

В процессе такой фильтрации некоторая часть воды и нужные организму соединения проходят процесс обратного всасывания (реабсорбцию). Остатки же распадов жиров, углеводов и белков отправляются далее к малым чашечкам. Как правило, это все азотистые соединения, мочевина, токсины и яды.

Они в дальнейшем выйдут из организма с потоком мочи.

В зависимости от расположения нефронов в корковом слое почек их можно классифицировать по таким типам:

  • Кортикальный нефрон;
  • Юкстамедуллярный;
  • Субкортикальный нефрон.

Стоит знать, что самый протяженный участок клубочкового аппарата — петля Генле локализуется в юкстамедуллярных нефронах. Те, в свою очередь, анатомически расположились на границе стыков коркового и мозгового веществ почек. При этом петля Генле практически касается верхушки пирамид мочевыделительного органа.

Важно: надежная работа кубочкового аппарата, расположенного в корковом слое, обеспечивает здоровье всего организма. Именно поэтому следует беречь почки от переохлаждения, травм и интоксикаций. Здоровые почки обеспечивают долгую и счастливую жизнь.

Источник: https://LecheniePochki.ru/anatomiya/korkovyj-sloj-pochki.html

Почки – строение и функции | Работа почек

Что такое корковое и мозговое вещество почки

  1. Функции почек
  2. Строение почки
  3. Регулирование выработки мочи
  4. Почки и pН крови

Функции почек

Основная функция почек в организме человека состоит в том, чтобы фильтровать кровь и удалять отходы.

20% крови организма постоянно находится в почках.

Основными метаболическими отходами, выделяемыми почками, являются мочевина, мочевая кислота и креатинин. Каждый из этих веществ содержит азот в качестве основного компонента.

Мочевина вырабатывается в печени в результате распада аминокислот, которые являются строительными блоками белков.

В печени проходит реакция между аммиаком и углекислым газом, в результате которой образуется мочевина и вода.

В результате биохимических реакций аминная группа (NH2) может быть удалена с аминокислоты для того, чтобы высвободить остальную часть молекулы, которая затем может участвовать в образовании углеводов или жиров.

Аминогруппа способна объединяться с ионами водорода с образованием токсичного аммиака, однако аммиак превращается в печени в менее токсичную мочевину прежде чем выделяется в кровоток.

Мочевая кислота является конечным продуктом обмена одного из компонентов нуклеиновых кислот – пуринов.

Креатинин является продуктом распада креатинфосфата в мышцах.

Фосфокреатин, также известный как креатинфосфат (CP или PCr (Pcr)), представляет собой фосфорилированную молекулу креатина, которая служит быстро мобилизуемым резервом высокоэнергетических фосфатов в скелетных мышцах и головном мозге.

Фосфокреатин синтезируется в печени и переносится для хранения в мышечные клетки через кровоток.

Фосфокреатин может анаэробно отдавать фосфатную группу для образования АТФ из АДФ в течение первых 2-7 секунд интенсивного мышечного или нейронного напряжения.

Почки у человека являются не только органами для выведениия продуктов метаболизма. Они являются одним из главных органов организма контролирующих гомеостаз. Помимо фильтрации крови для удаления отходов, работа почек заключается также в контролировании:

  • водного баланса,
  • pH,
  • уровня ионов натрия (Na+), калия (K+), бикарбоната (HCO3-) и кальция (Ca2+).

Почки также синтезируют гормон эритропоэтин (EPO), который стимулирует производство эритроцитов, а также почки активируют производство в коже витамина Д.

Эритропоэтин производится в ответ на гипоксию (низкий уровень кислорода в крови). EPO стимулирует клетки красного костного мозга увеличивая выход красных кровяных телец. Уровень кислорода в крови повышается по мере взросления эритроцитов и попадания в кровоток.

Кальцитриол является активной формой витамина D в организме.

Кальцитриол производится из неактивных молекул витамина D и перемещается из почек через кровоток в кишечник, где он увеличивает поглощение кальция из пищи в просвете кишечника.

Строение почки человека

Каждая почка состоит из трех отделоввнешней коры (корковое вещество), мозгового вещества и полого внутреннего пространства (почечная лоханка), где моча накапливается прежде, чем она будет двигаться вниз по мочеточникам.

Внутри коркового и мозгового вещества каждой почки около миллиона крошечных фильтров, называемых нефронами.

Каждый нефрон состоит из пяти частей:

Верхняя часть нефрона находится в почечной коре, а петля Генле расположена в мозговом веществе.

Трубки нефрона окружены клетками и сеть кровеносных сосудов проходит по всей ткани почки. Любые вещества, которые выходят из нефрона, входят в окружающие клетки и в конечном итоге возвращаются в кровоток через сеть кровеносных сосудов.

Капсула Шумлянского-Боумена (Bowman’s capsule)

Кровь поступает в сферическую полость капсулы Боумена через крошечную артерию, которая разветвляется и образует сеть пористых тонкостенных капилляров, называемых клубочковыми (glomerulus).

Под воздействием кровяного давления часть плазмы крови и мелких частиц вытесняется из капилляров в окружающую капсулу.

Большие компоненты крови, такие как клетки крови и белки, остаются в капиллярах.

Жидкость в капсуле Боумена, называемая нефрическим фильтратом, выталкивается из капсулы в проксимальный каналец.

Около 20% плазмы крови, поступающей в почку, превращается в нефротический фильтрат.

Проксимальный канал (proximal tubule)

Когда фильтрат входит в проксимальный каналец, начинается обратное всасывание (реабсорбция).

Осмос, диффузия и активный транспорт веществ способствуют переводу воды, глюкозы, аминокислот и ионов из фильтрата в окружающие клетки. Оттуда вещества возвращаются в кровоток. Этому процессу способствует активный перенос глюкозы и аминокислот из фильтрата.

Когда нефрический фильтрат достигает конца проксимального канальца, жидкость является изотоничной по отношению к окружающим клеткам, глюкоза и аминокислоты к этому моменту удалены из фильтрата.

Жидкость является изотонической, когда она имеет такую же концентрацию воды и растворенных веществ, как и в окружающих его клетках.

Петля Генле (loop of Henle)

Из проксимального канальца фильтрат перемещается в петлю Генле.

Основная функция петли Генле, которая сначала спускается во внутренний мозговой слой, а затем поворачивается, чтобы подняться назад к коре, – это удаление воды из нефрического фильтрата с помощью процесса осмоса.

Клетки мозгового вещества имеют повышенную концентрацию ионов натрия (Na+). Концентрация этих ионов увеличивается начиная от области, наиболее близкой к коре и в напралении к внутреннему пространству почки. Этот увеличивающийся градиент способствует извлечению воды из фильтрата в петле Генле.

Благодаря этому увеличению уровня Na+ в окружающей ткани этот процесс продолжается по всей длине нисходящей петли .

Высокие уровни Na+ в окружающей ткани мозгового вещества являются результатом активного транспорта Na+ из восходящей петле Генле.

Количество воды, удаленной из фильтрата к тому времени, когда оно достигло дна петли Генле, приводит к увеличению концентрации всех материалов, растворенных в оставшемся фильтрате, включая Na+.

Таким образом, по мере того как фильтрат поднимается вверх по восходящей петле Генле Na+ активно переносится из фильтрата в окружающую ткань. В то же время вода, которая вышла из нисходящий петли, не может снова туда войти, потому что восходящая петля непроницаема для воды.

Ионы хлора склонны следовать за ионами натрия из-за электрического притяжения между отрицательными ионами хлора и положительными ионами натрия. Кроме того, по мере того как концентрация воды в фильтрате уменьшается, концентрация хлорных ионов в фильтрате увеличивается, что приводит к еще большей диффузии хлора из восходящего контура.

Дистальный канал (distal tubule)

Дистальный канал отвечает за процесс, называемый трубчатой секрецией (tubular secretion).

Трубчатая секреция включает активный транспорт, который выталкивает такие вещества, как ионы водорода, креатинин и лекарства, из крови в нефрический фильтрат.

Коллекторный канал (collecting duct)

Жидкость от группы нефронов перемещается из дистальных канальцев в общий коллекторный канал, который несет то, что теперь можно назвать мочой в почечную лоханку.

В этот момент 99 процентов воды, которая вошла в проксимальный каналец как нефротический фильтрат, была возвращена в организм. Кроме того, были обратно абсорбированы такие питательные вещества, как глюкоза и аминокислоты.

Регулирование выработки мочи

Проницаемость дистального канальца и коллекторного канала контролируется гормоном, называемым антидиуретическим гормоном (ADH).

ADH секретируется железой, прикрепленной к гипоталамусу и называемой гипофизом.

Антидиуретический гормон увеличивает проницаемость дистального и коллекторного каналов и позволяет удалять больше воды из фильтрата нефрита, когда организм нуждается в экономии воды.

Осморегуляция – гомеостаз воды в организме

Гипофиз контролируется гипоталамусом.

Гипоталамус выступает в роли регулятора гомеостаза. Когда организму необходимо устранить избыток воды, секреция антидиуретического гормона подавляется и больше воды выводится с мочой.

Наркотики, такие как алкоголь и кофеин, блокируют выделение антидиуретического гормона и увеличивают объем мочи.

pH крови и почки

Почки регулируют кислотно-щелочной баланс крови.

Чтобы оставаться здоровым, рН крови должен оставаться примерно равным 7.4.

Одним из способов регулирования рН крови на этом уровне является регулирование активного переноса ионов водорода (Н+) в фильтрат нефрита.

Чтобы поддерживать pH крови на уровне 7.4, дыхательная система работает совместно с почками. Для контроля рН эти две системы зависят от химических веществ, называемых буферами.

Регуляция рН крови

  1. Легкие и почки играют важную роль в регуляции рН крови.
  2. Легкие регулируют рН за счет удержания или устранения СО2, изменяя скорость и объем их вентиляции.
  3. Почки регулируют рН путем выведения кислоты, главным образом иона аммония (NH4+) и путем обратного всасывания HCO3- из клубочкового фильтрата и добавления его обратно в кровь.

Основным буфером в крови является углекислота (H2CO3) – слабая кислота, которая распадается с высвобождением H+ и иона бикарбоната (HCO3-).

Концентрация углекислоты связана с концентрацией углекислого газа (CO2) и регулируется дыханием.

Другим примером буферизации является объединение ионов водорода в крови с аммиаком из клеток, которые выстилают нефрон.

Источник: https://biology.reachingfordreams.com/ru/%D0%B1%D0%B8%D0%BE%D0%BB%D0%BE%D0%B3%D0%B8%D1%8F/%D0%B2%D1%8B%D0%B4%D0%B5%D0%BB%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F-%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0/64-%D1%81%D1%82%D1%80%D0%BE%D0%B5%D0%BD%D0%B8%D0%B5-%D0%B8-%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B8-%D0%BF%D0%BE%D1%87%D0%B5%D0%BA

Корковый и мозговой слой паренхимы почек, диффузные и очаговые паренхиматозные изменения

Что такое корковое и мозговое вещество почки

Паренхима почки – сложная структура, выполняющая задачи не только по выведению мочи.

Фильтрация, реабсорбция (обратное всасывание), участие в регуляции кровяного давления – такие функции также возлагаются на почечную ткань.

Строение

Паренхима почки по функциональным особенностям разделена на 2 слоя: мозговой и корковый. Каждая часть имеет уникальное анатомическое строение.

Отделить почечные слои под обычным микроскопом нельзя – слишком мелкими капиллярами оснащена сеть паренхимы почек.

Паренхима почек человека

При электронной микроскопии в почечной ткани прослеживается миллион мелких кровеносных сосудов, как в корковом, так и в мозговом веществе. Они составляют более сложные структуры: пирамиды, нефроны, петля Генле.

Структура коркового вещества почки

Корковое вещество имеет неоднородную структуру темно-коричневого цвета. При морфологическом изучении в нем прослеживаются светлые и темные участки. Такую структуру имеют почечные дольки, состоящие из нефронов, проксимальных и дистальных канальцев, клубочков и капсулы Шумлянского-Боумена.

Мозговое и корковое вещество почек

Вышеперечисленные анатомические образования отвечают за реабсорбцию и фильтрацию. Капсула Боумена-Шумлянского и клубочки составляют функциональную единицу – почечные тельца. Основное назначается коркового слоя – первичная фильтрация мочи.

Что такое нефрон

Нефрон – важная единица, обеспечивающая процесс фильтрации. Многочисленные извитые канальцы образования осуществляют всасывание воды и минеральных солей из крови в мочу.

Виды нефронов

В зависимости расположения нефроны разделяются на следующие виды:

  • Субкортикальные;
  • Юкстамедуллярные;
  • Кортикальные.

За процесс фильтрации отвечает сеть извитых канальцев, получивших название петли Генле. Она расположена на границе коркового и медуллярного слоев.

Структура мозгового слоя почки

Мозговой слой включает много извитых канальцев, которые анатомически объединяются в пирамиды.

В структуре мозгового вещества выделяют нисходящие и восходящие сосуды, канальцы, объединяющиеся в пирамиду (состоит из основания и верхушки).

В мозговом веществе локализуются малые и большие чашечки, образующие лоханку. Структура предназначена для распределения и выведения фильтрационных продуктов.

Морфологически в мозговом веществе определяется до 20 пирамидок, которые обращены основанием к корковому веществу. Верхушка содержит почечный сосок, являющийся выходным отверстием собирательной трубочки.

Вы знали, что пиелонефрит может привести к истончению почечной паренхимы? Читайте в этой рубрике об особенностях течения пиелонефрита у женщин.

А здесь https://mkb2.ru/lechenie/tabletki-ot-pochek.html мы рассмотрим различные медикаменты для лечения почек и устранения болевых симптомов. Анальгетики, мочегонные средства, спазмолитики – когда и зачем применять.

Паренхима почек в переводе – это «наполняющая масса».

Термин определяет большое количество функциональных элементов, отвечающих за реабсорбцию и фильтрацию.

Клинические исследования почечной паренхимы с помощью УЗИ и магнитно-резонансной томографии оценивают диффузные и очаговые изменения.

Диффузные и очаговые патологические структуры хорошо прослеживаются при использовании вышеописанных диагностических методов.

У детей толщина паренхимы почки в норме не превышает 15 мм. После 16 лет она утолщается – более 1 см. Паренхима почек склонна к повреждению, но обладает высокой регенеративной способностью.

Провоцируются морфологические изменения органическими, функциональными, злокачественными перерождениями ткани.

При недостатке кровоснабжения и воспалительных заболеваниях (пиело- и гломерулонефрит) наблюдается истончение почек за счет разрастания соединительной ткани на месте повреждения (сморщивание органа).

Диффузное поражение проявляется множественным паренхиматозным поражением. Данная форма при постепенном прогрессировании (особенно если паренхима почки истончена) приводит к почечной недостаточности, при которой в кровеносном русле накапливаются токсины (мочевина, креатинин).

Локальные очаги – участки ограниченного повреждения почечной ткани. Причиной патологии являются воспалительные инфекции (туберкулез, сифилис), органическая нозология (мочекаменная болезнь), системные заболевания (ревматизм, красная волчанка).

Диффузные и очаговые изменения могут возникать совместно. К примеру, растущий рак почки приводит к истончению почечной ткани (сморщенность). Воспалительные болезни с диффузными изменениями могут спровоцировать возникновение злокачественных новообразований.

О том, какие функции выполняют почки и какие анализы позволят следить за состоянием мочевыделительной системы, читайте в этом блоке.

Источник: https://mkb2.ru/terminyi/parenhimyi-pochek-diffuznyie-i-ochagovyie.html

Корковый слой почки

Что такое корковое и мозговое вещество почки

Фиброзная капсула закрывает корковое вещество почки, имеющее сложную многосоставную структуру. Здесь начинается процесс переработки мочевины, образуется первичная моча. Жидкость обрабатывается нефроном, который возвращает часть полезных веществ в организм, а ненужные шлаки выводит в мочевой пузырь.

Системы

Почки имеют многоуровневое строение. Этот орган состоит из следующих частей:

  • столбики;
  • почечные сосочки;
  • корковое и мозговое вещество;
  • почечная пазуха;
  • большая и малая почечная пазухи;
  • лоханка.

Корковый слой и мозговое вещество почки непосредственно взаимодействуют и поддерживают деятельность друг друга. Мозговой слой соединен с корковым каналами, которые пропускают отфильтрованную мочу и проводят ее дальше — в чашки. Корковый слой имеет более насыщенный, темный цвет, чем мозговой.

Корковый слой состоит из долей, в структуре которых имеются:

  • почечные клубочки;
  • нефрон с проксимальными и дистальными канальцами;
  • капсула.

Внешняя сторона капсулы, внутренняя полость и клубочек образуют тельце почки. В клубочках расположены кровеносные капилляры. Клубочек и капсулы имеют специфическую структуру, позволяющую им проводить выборочную фильтрацию мочи при помощи гидростатического давления крови.

Кровеносные сосуды почек

Сосуды питают почки. В корковом слое происходит фильтрация крови и формирование первичной мочевины. Сосуды имеются и в мозговом слое — почечных пирамидах.

В этих органах поддерживается один из самых мощных кровотоков в организме человека. От аорты к почкам отходит почечная артерия, через которую за несколько минут пропускается кровь человека.

Здесь существует 2 круга кровообращения: большой и малый. Большой круг питает кору. Крупные сосуды здесь разделяются на сегментарные и междолевые.

Эти сосуды пронизывают весь орган, расходясь от центральной части к полюсам.

Междолевые артерии проходят между пирамидальными образованиями и достигают промежуточной зоны, разделяющей мозговое вещество с корковым. Здесь они объединяются в единое целое с дуговыми артериями, которые полностью покрывают кору вдоль всего органа. Мелкие ветви в междолевых артериях впадают в капсулу, где сливаются в сосудистый клубок.

Кровь проходит через клубочки капилляров, а затем собирается в небольших отводящих сосудах. Сосуды имеют боковые разветвления, оплетающие канальцы нефрона. Через капилляры кровь проходит в венозные сосуды и почечную вену, выводящую кровь из почек. Капилляры сливаются друг с другом, создавая узкие выводящие артериолы.

В артериолах сохраняется достаточно высокое давление, позволяющее выводить плазму в канальцы почек. Каналец, отходящий от капсулы, проходит сквозь наружный слой мозгового вещества, создавая петлю Генле и затем возвращаясь в корку. Благодаря этим процессам в органе осуществляется первичная выработка урины.

Малый круг состоит только из выводящих сосудов. Они выходят за пределы клубочков и образуют сложную сеть капилляров, которая оплетает стенки мочевыводящих канальцев. В этой зоне капилляры становятся венозными, образуя венозную выводящую систему всего органа.

Структура почки на разных срезах

На срезе хорошо просматривается ткань почек — паренхима и мочеобразующие трубочки. Здесь также видно, что корковая оболочка имеет насыщенный коричневый цвет.

В этой зоне располагаются продолговатые почечные тельца, витиеватые канальцы. Корковое и мозговое вещество почки связаны друг с другом пирамидами.

Промежуточная зона представляет собой темную линию, в которой проходят нервы и дуговые сосуды.

В мозговом слое или мочевыводящей части имеются светлые собирательные трубочки, образующие собой пирамиды. Их основание направлено к периферии. На вершинах есть небольшие сосочки. Под ними находятся чашечки, переходящие в обширную полость — лоханку.

Анатомия человека

Фильтрующий орган покрыт фиброзной капсулой. Внутренние зоны покрыты мальпигиевыми почечными пирамидами, которые разделены столбцами.

Верхушки пирамид образуют сосочки с множеством мелких отверстий, сквозь которые мочевина протекает в чашечки. Моча собирается в систему, состоящую из 6-12 небольших чаш, которые объединяются в 2-4 чашки большего размера.

Эти чаши сливаются воедино и переходят в почечную лоханку, а дальше образуют мочеточник.

Мозговой центр образован восходящей частью нефроновой петли и интерстициальной соединительной тканью. Мозговое вещество — это внутренний слой, в котором концентрируется мочевина. Здесь осуществляется переработка плазмы, очистка крови и всех ее внутренних компонентов.

В этих органах находится множество нервных окончаний, кровеносных сосудов. Это обеспечивает нормальную нервную проводимость капсулы, внешних и внутренних тканей.

Источник: https://pochkam.ru/bolezni-pochek/korkovyj-sloj-pochki.html

ПОЧКИ

Что такое корковое и мозговое вещество почки
статьи

ПОЧКИ, главный выделительный (выводящий конечные продукты метаболизма) орган позвоночных. У беспозвоночных, например у улитки, тоже есть органы, выполняющие сходную выделительную функцию и иногда называемые почками, но они отличаются от почек позвоночных по строению и эволюционному происхождению.

Функция

функция почек – выведение воды и конечных продуктов обмена веществ из организма. У млекопитающих важнейшим из таких продуктов является мочевина – основной конечный азотсодержащий продукт распада белков (белкового метаболизма).

У птиц и рептилий основной конечный продукт белкового обмена – мочевая кислота, нерастворимое вещество, имеющее вид белой массы в экскрементах. У человека мочевая кислота тоже образуется и выводится почками (ее соли называются уратами).

Почки человека выделяют около 1–1,5 л мочи в сутки, хотя эта величина может сильно варьировать. На увеличение потребления воды почки отвечают увеличением продукции более разбавленной мочи, тем самым поддерживая нормальное содержание воды в организме.

Если потребление воды ограничено, почки способствуют сохранению ее в организме, используя для образования мочи как можно меньше воды. Объем мочи может уменьшиться до 300 мл в день, а концентрация выводимых продуктов будет соответственно выше.

Объем мочи регулируется антидиуретическим гормоном (АДГ), называемым также вазопрессином. Этот гормон секретируется задней доли гипофиза (железы, расположенной в основании мозга). Если организму необходимо сохранить воду, секреция АДГ возрастает и объем мочи уменьшается.

Наоборот, при избытке воды в организме АДГ не выделяется и суточный объем мочи может достигнуть 20 л. Выведение мочи, однако, не превышает 1 л в час.

Образование мочи

В почечном клубочке вода и растворенные в ней вещества под действием артериального давления выходят из крови через стенки капилляров. Поры капилляров настолько малы, что задерживают кровяные клетки и белки.

Следовательно, клубочек работает как фильтр, пропускающий жидкость без белков, но со всеми растворенными в ней веществами.

Эта жидкость называется ультрафильтратом, клубочковым фильтратом, или первичной мочой; она подвергается обработке, проходя через остальные части нефрона.

В человеческой почке объем ультрафильтрата составляет около 130 мл в минуту или 8 л в час.

Поскольку общий объем крови у человека равен приблизительно 5 литрам, очевидно, что большая часть ультрафильтрата должна всосаться обратно в кровь.

Если предположить, что в организме образуется 1 мл мочи в минуту, то оставшиеся 129 мл (больше 99%) воды из ультрафильтрата необходимо вернуть в кровоток, пока они не стали мочой и не выведены из организма.

Ультрафильтрат содержит много ценных веществ (соли, глюкозу, аминокислоты, витамины и проч.), которые организм не может терять в значительных количествах. Большинство из них подвергается обратному всасыванию (реабсорбции) по мере того, как фильтрат проходит по проксимальным канальцам нефрона.

Глюкоза, например, реабсорбируется до тех пор, пока полностью не исчезнет из фильтрата, т.е. пока ее концентрация не приблизится к нулю.

Поскольку перенос глюкозы обратно в кровь, где ее концентрация выше, идет против градиента концентрации, процесс требует дополнительной энергии и называется активным транспортом.

В результате обратного всасывания глюкозы и солей из ультрафильтрата концентрация растворенных в нем веществ падает. Кровь оказывается более концентрированным раствором, чем фильтрат, и «притягивает» воду из канальцев, т.е. вода пассивно следует за активно транспортируемыми солями (см. ОСМОС). Это называется пассивным транспортом.

С помощью активного и пассивного транспорта 7/8 воды и растворенных в ней веществ из содержимого проксимальных канальцев всасываются обратно, причем скорость уменьшения объема фильтрата достигает 1 л в час. Теперь во внутриканальцевой жидкости содержатся в основном «шлаки», такие, как мочевина, но процесс образования мочи еще не окончен.

Следующий сегмент, петля Генле, отвечает за создание очень высоких концентраций солей и мочевины в фильтрате.

В восходящем отделе петли происходит активный транспорт растворенных веществ, в первую очередь солей, в окружающую тканевую жидкость мозгового вещества, где в результате создается высокая концентрация солей; благодаря этому из нисходящего колена петли (проницаемого для воды) часть воды отсасывается и сразу поступает в капилляры, тогда как соли постепенно диффундируют в него, достигая наибольшей концентрации в изгибе петли. Этот механизм называется противоточным концентрирующим механизмом. Затем фильтрат поступает в дистальные канальцы, где за счет активного транспорта в него могут перейти и другие вещества.

Наконец, фильтрат попадает в собирательные трубочки. Здесь определяется, какое количество жидкости будет дополнительно выведено из фильтрата, а стало быть, и каков будет окончательный объем мочи, т.е. объем конечной, или вторичной, мочи. Данный этап регулируется наличием или отсутствием АДГ в крови.

Собирательные трубочки находятся между многочисленными петлями Генле и идут параллельно им. Под действием АДГ их стенки становятся проницаемыми для воды.

Поскольку концентрация солей в петле Генле очень высока, а вода имеет тенденцию следовать за солями, она фактически вытягивается из собирательных трубочек, оставляя раствор с высокой концентрацией солей, мочевины и других растворенных веществ. Этот раствор и есть конечная моча.

Если АДГ в крови отсутствует, то собирательные трубочки остаются малопроницаемыми для воды, вода из них не выходит, объем мочи остается большим и она оказывается разведенной.

Почки животных

Способность концентрировать мочу особенно важна для животных, у которых затруднен доступ к питьевой воде. Кенгуровая крыса, например, живущая в пустыне на юго-западе США, выделяет мочу в 4 раза более концентрированную, чем у человека. Значит, кенгуровая крыса способна выводить шлаки в очень высокой концентрации, используя минимальное количество воды.

Для морских животных отсутствие пресной воды тоже составляет проблему, которая решается по-разному.

Если люди, потерпев кораблекрушение и не имея запасов пресной воды, начинают пить морскую воду, они лишь ускоряют свою гибель, так как их почки не могут вывести такое количество солей.

Тюлени и киты, которым пресная вода для питья недоступна, имеют очень мощные по своей концентрирующей способности почки, которые выводят избыток солей, получаемых с морской водой. Возможно также, этим животным просто достаточно воды, получаемой с пищей.

Почки морских птиц (чаек, пингвинов, альбатросов и др.) способны концентрировать мочу еще меньше, чем почки человека. Однако эти птицы могут пить морскую воду, так как у них имеются т.н. солевые железы (расположенные на голове), которые выводят избыток соли, в основном хлорид натрия, в виде высококонцентрированного раствора, оставляя достаточно воды на другие физиологические нужды.

Несколько видов рептилий – морские черепахи, морские змеи и галапагосская морская игуана – также живут в морской воде. Их почки не могут выделять мочу, более концентрированную, чем плазма крови. Однако, как и морские птицы, они используют солевые железы.

Основные заболевания почек

Почечные камни – это отложения солей в почках, образующиеся при высокой концентрации солей в моче или повышении кислотности мочи, т.е. в условиях, способствующих кристаллизации солей. Основные типы камней – оксалаты, фосфаты либо ураты.

Мелкие камни (песок) выходят через мочеточники, почти не причиняя вреда. Более крупные могут застревать в мочеточниках, что сопровождается мучительными болями (почечными коликами). Еще более крупные камни остаются в лоханках, вызывая боль, инфицирование и нарушение функции почек.

Потребление большого количества воды снижает вероятность образования камней.

Почечные камни удаляют хирургическим путем или методом литотрипсии (применением ультразвуковых волн для раздробления камней на мелкие фрагменты, которые могут быть выведены через мочеточники). Этот метод не наносит ущерба мягким тканям почек.

Почечная недостаточность и гемодиализ

Множество причин, например почечная инфекция или деструктивный процесс при заболеваниях типа сахарного диабета, может привести к нарушениям функции почек вплоть до почечной недостаточности. При хронической почечной недостаточности происходит нарушение кислотно-щелочного равновесия и накопление азотистых шлаков в крови, в первую очередь мочевины.

Страдающих хронической почечной недостаточностью удается лечить с помощью пересадки почки – сложного хирургического вмешательства, для которого необходимо иметь в распоряжении подходящий донорский материал. После операции проводится длительная иммунодепрессивная терапия, снижающая вероятность отторжения трансплантанта (см. ПЕРЕСАДКА ОРГАНОВ).

Однако чаще больных с почечной недостаточностью поддерживают с помощью гемодиализа (искусственной почки). Его принцип заключается в том, что кровь из артерии (обычно из предплечья) проходит через аппарат искусственной почки и возвращается в вену больного. В приборе кровь протекает через микроскопические канальцы, окруженные тонкой пластиковой мембраной.

С другой стороны мембраны находится диализная жидкость. Если бы вместо диализной жидкости канальцы окружала вода, то все растворенные в крови вещества – соли, сахар и другие – вымывались бы из плазмы крови, т.е. выходили бы через мембрану в воду.

Чтобы избежать этого, в качестве диализной жидкости берут раствор, содержащий те же компоненты и в тех же концентрациях, что и плазма крови, однако вещества, подлежащие удалению из плазмы (например, мочевина), в диализной жидкости отсутствуют. Во время гемодиализа эти вещества выходят из плазмы, так что в вену больного возвращается очищенная кровь.

Гемодиализ можно проводить годами. Регулярно посещая диализный центр, пациенты продолжают вести нормальную жизнь. См. также НЕФРИТ; УРЕМИЯ.

Источник: https://www.krugosvet.ru/enc/nauka_i_tehnika/biologiya/POCHKI.html

Корковое вещество почки: анатомия, расположение, структура, выполняемые функции и влияние на организм человека

Что такое корковое и мозговое вещество почки

Корковое вещество почки является сложной структурой, заполненной различными составляющими, проводящими огромную работу по очистке всего организма от вредных веществ и излишней жидкости. Любой сбой в этой отлаженной системе может привести к серьезным проблемам, сложным заболеваниям, а порой и трансплантации органа.

Из чего состоят почки

Почки – бобовидные органы в человеческом организме. Каждая из них размером с кулак. Они расположены чуть ниже грудной клетки, с обеих сторон от позвоночника.

Главным образом выделяют три области органа. В почке есть корковое вещество, расположенное примерно посередине, внешняя оболочка (капсула) и внутренний слой (мозговое вещество). Оболочка представляет собой прозрачную мембрану, выстилающую внешнюю часть органа, которая действует как защита от инфекций и травм.

Расположенное внутри мозговое вещество состоит из темной ткани и содержит восемь или более треугольных структур, известных как почечные пирамиды. Корковое вещество находится между этими двумя слоями. Оно обычно имеет более бледный цвет с желтоватым оттенком и тянется вниз между пирамидами наподобие солнечных лучей.

Что это такое

Люди, как правило, имеют две почки, основной обязанностью которых считается очищение крови от отходов жизнедеятельности и их выведение за пределы организма. Толщина коркового вещества почки составляет около 5-6 мм и обычно рассматривается как своего рода изоляционный слой.

Это не самое внешнее покрытие, но на самом деле оно расположено и не посередине. Можно представить эту часть как альбедо апельсина (белую губчатую мякоть) – она простирается ниже кожуры, но выше плода.

Многие важные объекты инфраструктуры органа начинаются, а иногда и заканчиваются именно здесь.

Слой состоит в основном из нефронов, которые являются главной рабочей силой органа, а также кровеносных сосудов, скрученных между собой в крошечные клубочки. Здесь также находится ряд почечных канальцев.

Строение коркового вещества почки такое, чтобы вся внутренняя система структуры действовала как фильтр. Многие элементы, поступающие туда, проходят тщательный отсев, что позволяет органу выполнять свою работу.

Правильное функционирование слоя имеет важное значение для общего состояния здоровья, что делает важной эту область. Без нее были бы очень хрупкими и потенциально нестабильными многие процессы и системы. Следовательно, проблемы с корой или слабые места на любом отрезке ее поверхности могут привести к ряду потенциально опасных для жизни заболеваний.

Из чего состоит

В корковом веществе почки находятся миллионы единиц, известных как нефроны. Большинство из них (85 %) содержится именно там. Оставшиеся 15 % называются юкстамедуллярными, и их клубочки расположены в периферийной области слоя, на стыке с мозговым веществом, а петли Генле, входящие в их состав, обнаруживаются уже за границей этой зоны.

Каждый нефрон содержит тельца, состоящие из того, что называется клубочком (гломерулой). Эта структура представляет собой крошечный узел кровеносных сосудов, стенки которых испещрены мелкими отверстиями.

Они слишком малы, чтобы позволить клеткам крови вырваться, но вода, минералы, питательные вещества и другие крошечные молекулы способны проходить в мочевое пространство.

Это образование заключено внутри структуры, известной как капсула Боумена.

Отфильтровавшись через клубочек, жидкость (первичная моча) проходит по почечным канальцам (состоящим из проксимального канальца, петли Генле, переходящей в дистальный извитой каналец), где важнейшие питательные вещества вместе с большим количеством жидкости реабсорбируются обратно в кровь. Там же в оставшуюся жидкость выделяются определенные химические вещества (в том числе аммиак), так формируется вторичная моча, она концентрируется в собирательных трубочках, чтобы через протоки попасть в почечную лоханку, мочеточник, а затем в мочевой пузырь.

Основные обязанности

Главные процессы коркового вещества почки и функции, которое оно выполняет, заключаются в следующем:

  • В клубочках происходит фильтрация плазменной жидкости.
  • Ренальные столбцы проникают между пирамидальными структурами мозгового слоя, таким образом обеспечивая кровоснабжение всего органа.
  • Активно участвует в метаболизме почек, создавая аммиак для титрования кислотности мочи и таким образом помогает в кислотно-щелочной регуляции.
  • Помогает в экскреции разбавленной или концентрированной мочи, что очень важно для поддержания объема крови.
  • Является местом воспроизведения эритропоэтина – особого гормона, стимулирующего выработку эритроцитов.

Процесс фильтрации

Начинается в нефронах, каждый из которых снабжается кровью через свою собственную афферентную артериолу. Она входит в клубочек, состоящий из пучка переплетенных между собой капилляров.

Данное образование окружено капсулой Боумена, в которой процесс фильтрации происходит под давлением. Это заставляет сыворотку проходить сквозь природно перфорированные капилляры, а кровяные тельца, будучи слишком крупными для отверстий, остаются внутри.

Как только жидкость пересекает стенки сосудов, она начинает называться фильтратом.

Важно понимать, что при малейшем повреждении этой системы все элементы, выводящиеся из организма наружу, остаются в крови, продолжая циркулировать по организму и нанося корковому веществу почки значительный урон.

Затем фильтрат поступает в почечные канальцы, в которых протекает процесс повторной фильтрации: возврата полезных веществ и воды обратно в кровоток, вывод токсинов, концентрация оставшейся жидкости (мочи) и дальнейший ее вывод из организма.

Функции коркового и мозгового вещества почки

Обе области являются основными частями органа, но различны по своей текстуре.

Корковый слой:

  • является внешней большей частью органа;
  • занимается выделением мочи;
  • в нем присутствуют почечные тельца и канальцы;
  • вырабатывает эритропоэтин.

Мозговое вещество:

  • является внутренним слоем;
  • задействовано в концентрации мочи;
  • содержит петли Генле и собирательные протоки;
  • не участвует в производстве эритропоэтина.

Кроме того, обе части помогают в процессе поддержания осмолярности плазмы, состава ионов, компонентов крови и фильтрации.

Распространенные проблемы

Корковое вещество является внешней частью почек, где производится моча. При длительной болезни (хронической почечной недостаточности), если органы работают менее чем на 20 % от своих возможностей, обнаруживается атрофия.

Многие заболевания могут влиять на структуру и функцию всех частей коркового вещества почки.

Клубочки обычно очень восприимчивы к инфекциям и аутоиммунным нарушениям (гломерулонефрит, СКВ), а радиоактивные вещества и некоторые лекарства могут причинить вред канальцам.

Когда возникают проблемы подобного рода, корковое вещество может быть повреждено и перестает в полной мере справляться с очисткой или вообще прекращает процесс фильтрации.

Эти случаи приводят к ряду серьезных медицинских проблем.

Диагностика

Проблемы коркового вещества почки обычно диагностируются с помощью УЗИ брюшной полости, компьютерной томографии (КТ) и магнитно-резонансной томографии (МРТ). Лабораторные анализы крови и мочи также могут дать врачу некоторое общее представление о том, насколько хорошо функционируют органы.

Если показатели будут говорить о серьезных внутренних изменениях, то может понадобиться биопсия для помощи в поиске заболевания. При этом из коркового слоя берутся образцы ткани, чтобы увидеть картину целиком и поставить точный диагноз. Лечение обычно начинается сразу после обнаружения проблем.

Серьезные необратимые повреждения коркового вещества почки могут потребовать диализного лечения. Например, при последних стадиях почечной недостаточности, когда большая часть клубочков безвозвратно атрофируется и скорость фильтрации значительно снижается, такой метод помогает очистить организм от токсинов и вывести их наружу.

Источник: https://FB.ru/article/414637/korkovoe-veschestvo-pochki-anatomiya-raspolojenie-struktura-vyipolnyaemyie-funktsii-i-vliyanie-na-organizm-cheloveka

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.